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Abstract—With the recent remarkable advancement of large
language models (LLMs), there has been a growing interest in
utilizing them in the domains with highly sensitive data that lies
outside their training data. For this purpose, retrieval-augmented
generation (RAG) is particularly effective—it assists LLMs by
directly providing relevant information from the external knowl-
edge sources. However, without extra privacy safeguards, RAG
outputs risk leaking sensitive information from the external data
source. In this work, we explore RAG under differential privacy
(DP), a formal guarantee of data privacy. The main challenge
with differentially private RAG is how to generate long accurate
answers within a moderate privacy budget. We address this by
proposing an algorithm that smartly spends privacy budget only
for the tokens that require the sensitive information and uses
the non-private LLM for other tokens. Our extensive empirical
evaluations reveal that our algorithm outperforms the non-RAG
baseline under a reasonable privacy budget of ε ≈ 10 across
different models and datasets.
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I. INTRODUCTION

Large language models (LLMs) have shown a great deal
of promise in a variety of applications. In particular, a major
application of LLMs is in question-answering (QA). The prac-
tical adoption of these systems often involves domains whose
data is highly sensitive. For instance, healthcare institutions
might want to utilize their internal medical records to provide
precise medical information and personal feedback, while legal
firms can leverage their case archives to assist clients with
legal research and documentation. One way to achieve such
domain-specific QA is through retrieval-augmented generation
(RAG) [6, 18, 25]. Here, we have a set of domain-specific
documents; while answering a question, RAG retrieves a list
of relevant documents and inputs them to LLMs as the context.
However, even though this is effective for QA, RAG on a
sensitive corpus can leak private information about individual
documents in the corpus [5, 34, 35, 45]. This is particularly
problematic when end users are outside the data-holding entity,
e.g., patients interacting with a healthcare institution’s RAG
system.

Our goal in this paper is to prevent the information leakage of
the sensitive external corpus by designing a privacy-preserving
RAG system. For this purpose, we use differential privacy
(DP) [12, 13] as a notion of privacy. Differential privacy
guarantees privacy by ensuring that the participation of a
single person’s data does not make much difference to the
probability of any output. In our system, we assume that each
RAG document comes from a single individual, and our goal
is to ensure differential privacy on the eventual answer of the
LLM.

There are two aspects of the challenges with designing an
effective RAG algorithm under DP. The first is how to fit
differential privacy into the RAG framework, and the second
is how to manage the privacy-utility tradeoffs. We address
the first challenge by proposing an algorithm, DPVoteRAG,
based on the sample-and-aggregate framework in DP [30]. Our
algorithm prepares multiple LLM instances, or voters, feeds
disjoint partitions of the sensitive corpus to them, and produces
output tokens one by one each through the majority vote of the
voters’ token outputs. Note, however, that LLMs often output
many tokens in response to a question. This is detrimental
to privacy—the composition property of differential privacy
states that multiple calculations based on the same dataset
lead to greater privacy degradation. To resolve this challenge,
we design another algorithm, DPSparseVoteRAG, that spends
a privacy budget only when we need to. More specifically,
we take advantage of the fact in RAG that LLMs require the
sensitive corpus only when generating tokens related to the
knowledge. When not, outputs from LLMs without any context
suffice. We formalize this idea with the sparse vector technique
in DP [11, 14]—when voters agree with the non-private output
of the LLM without contexts, we will simply output the non-
private one without incurring a privacy budget. Consequently,
our algorithm successfully generates sufficiently long, accurate
responses under a reasonable privacy budget.

We conduct extensive experiments with a series of LLMs
on multiple benchmarking datasets to evaluate our algorithms.
The results demonstrate that our algorithms are able to enhance
the LLMs by RAG while ensuring privacy for the external
corpus. We further show that DPSparseVoteRAG improves
DPVoteRAG by only spending a privacy budget when necessary
and enabling us to generate longer answers within a reasonable
privacy budget of ε ≈ 10.

II. PRELIMINARIES & PROBLEM SETTING

A. Retrieval-Augmented Generation with Large Language
Model

Retrieval-augmented generation (RAG) is a technique to
improve the performance of large language models (LLMs) on
knowledge-intensive tasks by providing external knowledge.
Given a question prompt, a retriever finds relevant documents
from the external data source. Then, the relevant documents are
added to the prompt as the contexts. An LLM (or generator)
takes the augmented prompt as input and outputs the answer.

More formally, let x ∈
⋃∞
t=1 Vt be a prompt, where V is

some vocabulary. We further let D be a dataset of documents
as an external corpus with size |D| = n. A retriever R finds
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Fig. 1: Overview of our problem setting. Note that the LLM in RAG is trained outside the privacy barrier by DP.

a subset of D, Dx ⊂ D, with size k that is relevant to x,
i.e., Dx = R(x,D; k). Finally, an LLM generates an answer
y = LLM(x,Dx) ∈

⋃∞
t=1 Vt. The answer generation can

further be decomposed into next-token generation. In particular,
for each t, the t-th token yt ∈ V is generated by LLMt, which
takes x, Dx, and previously generated tokens y<t as inputs:
yt = LLMt(x,Dx, y<t).

B. Differential Privacy

Differential privacy (DP) is a strong cryptographically
motivated definition of individual-level privacy. It guarantees
that the participation of a single individual in a dataset does not
change the probability of any outcome by much. In particular,
suppose we have two datasets D and D′, each consisting of
private data from n individuals. We say that D and D′ are
neighboring if they differ in a single individual’s private data.
A randomized algorithm satisfies differential privacy if the
output distributions on any pair of neighboring datasets are
close. The formal definition is given as follows.

Definition 1 ((ε, δ)-Differential Privacy [12]). A randomized
algorithm M satisfies (ε, δ)-differential privacy if for any two
neighboring datasets D,D′ and for any S ⊆ range(M),

Pr[M(D) ∈ S] ≤ exp(ε) Pr[M(D′) ∈ S] + δ.

One of the key properties of DP is composition—sequential
runs of differentially private algorithms also satisfy differential
privacy. The composition property quantitatively captures the
intuition that the more we release the information about the
sensitive data, the worse the privacy guarantee becomes. More
specifically, suppose M1, . . . ,MT are (ε0, δ0)-differentially
private algorithms, which can be chosen adaptively based on
previous outputs. Sequential composition theorem [12] states
that the composed sequence of such algorithms guarantee
(Tε0, T δ0)-differential privacy. Furthermore, advanced com-
position theorem [15, 21] states that the total privacy guarantee
has ε = O(

√
Tε0).

1) Sparse Vector Technique: The sparse vector technique [11,
14] has originally emerged as the alternative of the composition
in DP when we have such a large number of numerical queries
that the composition theorem cannot provide a reasonable
privacy guarantee but we are only interested in answers above
some threshold. In such a case, the sparse vector technique
algorithm, Sparse, reports whether each (noisy) query answer
exceeds the threshold. It is shown that the privacy guarantee
degrades by the number of queries above the threshold, instead
of the total number of queries. Therefore, we save privacy
budget by much when we expect only a few queries will be
above the threshold.

We state the AboveThreshold in Algorithm 1 and state their
guarantee as below.

Algorithm 1: AboveThreshold [11]
Require: A private database D, an adaptively chosen stream

of sensitivity 1 queries f1, · · · , and a threshold τ .
Ensure: A stream of responses a1, · · · .

1: Let τ̂ = τ + Lap
(
2
ε

)
.

2: for Each query i do
3: Let vi = Lap

(
4
ε

)
4: if fi(D) + vi ≥ τ̂ then
5: Output ai = 1, Halt.
6: else
7: Output ai = 0.
8: end if
9: end for

Theorem 1. ALgorithm 1 is (ε, 0)-DP.

2) Differentially Private Generation via Sample-and-
Aggregate: There has been a body of work on generating
a token sequence by LLM with DP. The most common way
is to borrow the idea of the sample-and-aggregate framework
in DP [30]. To generate a single token, a set of LLMs, each
depending on a disjoint subset of the sensitive dataset D,
generates a token respectively. The generated tokens form



an aggregate histogram of tokens, which is then carefully
randomized with noise and only the most frequent token in the
noisy histogram is published as the final output. The repetition
of this process along with the composition theorem of DP
yields the differentially private token sequence generation.

C. Problem Setting

Our goal is to generate an LLM answer to a prompt
x with retrieved external knowledge, Dx = R(x,D; k),
from a sensitive data source D with a differential privacy
guarantee. More specifically, let the sensitive data source D be
a collection of individuals’ records—one record corresponds
to one individual’s sensitive data1. We consider a realistic
adversary who does not have direct access to the data source
D but has a capability of querying to the RAG system with any
prompt x. We further assume that the LLM used in the RAG
system is a copy of publicly available LLMs and is already pre-
trained (and fine-tuned) with data disjoint from the sensitive
data source D. That is, having access to the LLM parameters
and/or pre-training (and fine-tuning) data does not provide any
information on the sensitive data source D. To this end, we aim
to formally guarantee that given any question x, a randomized
LLM generation algorithm with RAG, LLMpriv(x,R(x,D; k))
satisfies (ε, δ)-differential privacy w.r.t the external knowledge
data source D. We present the figure for this problem setting
in Figure 1.

III. DIFFERENTIALLY PRIVATE RETRIEVAL-AUGMENTED
GENERATION WITH SPARSE VECTOR TECHNIQUE

Our differentially private RAG algorithm consists of two
main components—DP voting for the single-token generation
and efficient privacy budget spending by leveraging the sparse
vector technique combined with the utilization of LLMs without
any relevant documents provided. These two components enable
us to generate answers that incorporate external knowledge
while guaranteeing a reasonable level of differential privacy.
We start from our algorithm with the first component alone, and
then extend it to include the second component. The graphical
overview of our algorithm is presented in Figure 2.

A. DPVoteRAG: Differentially Private Voting Algorithm for
RAG

By the nature of retrieval in RAG—retrieving relevant docu-
ments for a question, the LLM outputs can depend on a sensitive
individual’s document. Therefore, our algorithmic design needs
to relax the dependency of a single individual’s document on the
output, while exploiting the external data source, to achieve a
reasonable privacy-utility tradeoff. Inspired by the differentially
private generation via sample-and-aggregate framework, we
present a differentially private voting algorithm for RAG—
DPVoteRAG.

Given a prompt x and external data source D, DPVoteRAG
first retrieves mk documents as Dx. Then it makes uniformly

1It is straightforward to extend the setting to where multiple records
correspond to one individual’s data by modifying the granularity of neighboring
datasets in DP possibly with overhead in privacy-utility tradeoff.

randomly partitions Dx into m disjoint datasets D1
x, . . . , D

m
x

and each subset has exact size k. Then, for each i = 1, . . . ,m,
it feeds k documents Di

x into the LLM along with the
original prompt x, and generates a next token. It collects
these tokens to form a histogram over the vocabulary. It
remains to privately choose the most frequent element from
the histogram. While it is generally hard to do so when
the histogram dimension is large as in our setting, e.g., the
vocabulary size of OPT [46] is 50272, there is a line of work
in the community to overcome this difficulty. Following the
work by Hong et al. [17], we integrate the LimitedDomain
mechanism [10] into our algorithm. The mechanism enables us
to reduce the histogram dimension significantly with some cost
in a privacy budget and thus achieve a better privacy-utility
tradeoff. By its design, the LimitedDomain mechanism possibly
outputs the designed null token. In such a case, we halt the
algorithm, or equivalently, regard that it outputs the end of
sequence token. 2 Finally, we append the chosen token to the
next input to the LLM. We repeat this process until we see the
end of sequence token chosen or reach the maximum number
of token generation, which is computed in advance from the
per-token and total privacy budget 3. We present the concrete
algorithm in Algorithm 2. The formal privacy analysis is as
follows.

Theorem 2. For any question x, DPVoteRAG satisfies
(εtotal, δtotal)-DP w.r.t. the external data source D.

The guarantee simply follows from the property of uniformly
random partition, the privacy guarantee of the LimitedDomain
mechanism and the composition theorem used to compute
Tmax.

Proof. Let’s first consider steps 3 and 4 in Algorithm 2.
Suppose Lx is the list of documents in Dx ranked by the
relevance. One way to uniformly randomly split Dx into
m disjoint subsets D1

x, · · · , Dm
x is that: given a ranked list

of documents Lx = (d1, · · · , dmk), we randomly permute
this list by π to Lπx = (dπ(1), · · · , dπ(mk)) and let Di

x :=
{dπ((i−1)k+1), · · · , dπ(ik)}. The process from Dx to Lx is
deterministic, and the remaining of the algorithm is independent
of D given Lπx . Therefore, we can equivalently denote the
outcome of Algorithm 2 as A(Lπx).

For any two neighboring datasets D and D′, the retrieved
datasets are Dx = R(x,D;mk) and D′x = R(x,D′;mk) and
we denote Lx = (d1, · · · , dmk) and L′x = (d′1, · · · , d′mk). We
only need to show for any set of outcomes S, PrA,π[A(Lπx) ∈
S] ≤ exp(ε) PrA,π[A((L′x)π) ∈ S] + δ. First of all, Dx and
D′x have at most one different document (without considering
the order). Therefore we can define another list of documents
L′′x = (d′′1 , · · · , d′′mk), such that L′′x is some ranking of D′x and

2We find that by choosing the appropriate size of reduced dimension, the
LimitedDomain mechanism in our experiment rarely outputs the null token.

3The maximum number of token generation is computed as follows. We
first calculate the maximum numbers of composition with the sequential
and advanced composition theorem [11] under the per-token privacy budget
(εtoken, δtoken) and total privacy budget (εtotal, δtotal). Then, we take the
maximum of two numbers of possible composition.
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it differs at most one position from L. Notice that L′x and
L′′x are only different at orders. Therefore (L′x)π and (L′′x)π

have same distributions and as a consequence A((L′x)π) and
A((L′′x)π) have same distributions.

Thus, the remaining is to prove for any set of outcomes S,
PrA,π[A(Lπx) ∈ S] ≤ exp(ε) PrA,π[A((L′′x)π) ∈ S] + δ. We
can actually prove a stronger conclusion PrA[A(Lπx) ∈ S] ≤
exp(ε) PrA[A((L′′x)π) ∈ S] + δ. It is because Lπx and (L′′x)π

differ at most one position and therefore at most one subset
in step 4 is different given Lπx or (L′′x)π . This means that the
histogram in step 10 differs at most one token. The guarantees
of LimitedDomain and the composition theorem of DP together
imply PrA[A(Lπx) ∈ S] ≤ exp(ε) PrA[A((L′′x)π) ∈ S]+δ.

B. DPSparseVoteRAG: Differentially Private Voting Algorithm
for RAG with Sparse Vector Technique

The main drawback of the aforementioned algorithm is that
we need to spend a non-negligible amount of privacy budget for
each token to guarantee its quality. This prevents our algorithm
from generating longer answers—sometimes it can halt before
it generates the actual answers due to privacy budget shortage.
More concretely, consider the following question-answering
example:

Question: what type of literature is the great gatsby
Ground Truth Answer: novel

Here are possible outputs from (non-private) RAG and our
DPVoteRAG given the retrieved documents.

RAG Output: The Great Gatsby is a novel written by
American author F. Scott Fitzgerald.
DPVoteRAG Output: The Great Gatsby is a

While non-private RAG correctly answers the question, due
to the pre-fixed total privacy budget, DPVoteRAG can only
output 5 words and thus it fails to output the ground truth
answer, novel.

However, having a closer look at our voting algorithm, we
observe that there is room for improvement. When generating
the 3rd word, Gatsby, every input of the LLM contains The
Great, 1st and 2nd previously output words, and the great
gatsby, a part of the question, even though the provided
retrieved documents are different. Thus, the LLM should
successfully generate Gatsby without access to the sensitive
information. Ideally, we should not spend a privacy budget for
such a word.

We address this by incorporating the sparse vector technique
into our voting algorithm, yielding our improved algorithm
DPSparseVoteRAG. In particular, before we apply private
voting among generated tokens, we check if the generated
tokens coincide with the token generated by the LLM without
retrieved documents appended, i.e., the input is composed of
the prompt and previously generated tokens only. We continue
to the voting only when they do not coincide. Otherwise,
we use the LLM output without retrieved documents. It is
shown from the analysis of the sparse vector technique that
the consumed privacy budget scales with the number of times
that it uses the private voting, not with the total number of
generated tokens. Consequently, the resulting algorithm, shown



Algorithm 2: DPVoteRAG
Require: Prompt x, External data source D, Generator LLM, Retriever R, # of voters m, # of retrieval per voter k, Per-token

privacy budget (εtoken, δtoken), Total privacy budget (εtotal, δtotal)
Ensure: Private answer y

1: Tmax ← maximum # of tokens to generate based on (εtoken, δtoken) and (εtotal, δtotal)
2: {Retrieval and random partition of the relevant documents}

3: Dx ← Retrieve mk most relevant documents R(x,D;mk).
4: D1

x, · · · , Dm
x ← Uniformly randomly partition Dx into m disjoint subsets.

5: for t← 1 to Tmax do
6: {Generating the token histogram with the sensitive documents}

7: for i← 1 to m do
8: y

(i)
t ← LLMt(x,D

i
x, y<t)

9: end for
10: ht ← Build a histogram of tokens from y

(1)
t , . . . , y

(m)
t

11: {Producing a token from the histogram privately}

12: yt ← LimitedDomain(ht, εtoken, δtoken)
13: {Halting if end of sequence}

14: if yt = <EOS> then
15: return (y1, . . . , yt)
16: end if
17: end for
18: return (y1, . . . , yTmax

)

in Algorithm 3, enables us to spend a privacy budget only
when it needs sensitive information. We note that as a result
of this change in our algorithm, we compute the maximum
number of tokens to generate with private voting, cmax, from
the per-token privacy budget (εtoken, δtoken) and total privacy
budget (εtotal, δtotal), instead of the maximum number of token
generation, Tmax, as in DPVoteRAG but in the same way to
compute Tmax. The formal privacy analysis of this algorithm
is as follows. The guarantee holds due to the privacy guarantee
of the LimitedDomain mechanism and the AboveThreshold
algorithm [11].

Theorem 3. For any question x, DPSparseVoteRAG satisfies
(εtotal, δtotal)-DP w.r.t. the external data source D.

Proof. Similar to the proof of Theorem 2, we only
need to prove that if Dx = (D1

x, · · · , Dm
x ) at step 7

and D′x = (D1′

x , · · · , Dm′

x ) differ at most one set Di
x,

Pr(y1, · · · , yTmax
) ≤ ε · Pr(y′1, · · · , y′Tmax

) + δ.
Denote tγ as the first time step that holds c = γ

at the beginning of this time step, e.g. tcmax = 1. We
can first prove that Pr(ytγ≤t<tγ−1 |Dx, yt<tγ ) ≤ εtoken ·
Pr(y′t′γ≤t<t′γ−1

|D′x, y′t<t′γ ) + δtoken if (1) tγ = t′γ and (2)
yt<tγ = y′t<tγ .

This can be proved by two parts. First, because tγ = t′γ ,

Pr(tγ−1|Dx, yt<tγ ) ≤ εtoken/2 · Pr(tγ−1|D′x, y′t<t′γ ).

This is implied by applying the sparse vector technique
presented in Algorithm 1 and Theorem 1 to analyze our
algorithm (step 17-20). Furthermore, if tγ−1 = t′γ−1,

Pr(ytγ≤t<tγ−1 |Dx, yt<tγ ) = Pr(ynon−RAGtγ≤t<tγ−1
, yDPtγ−1

|Dx, yt<tγ )

= Pr(ynon−RAGt′γ≤t<t′γ−1
, yDPt′γ−1

|Dx, y′t<t′γ )

≤ εtoken/2 · Pr(ynon−RAGt′γ≤t<t′γ−1
, yDP

′

tγ−1
|D′x, y′t<t′γ ) + δtoken/2

= Pr(y′t′γ≤t<t′γ−1
|D′x, y′t<tγ )

where the first and the last equality come from the definition of
the algorithm (step 17-23), the second equality holds because
we assume tγ = t′γ , yt<tγ = y′t<tγ and tγ−1 = t′γ−1, and the
inequality comes from the DP guarantee by the LimitedDomain
mechanism.

Lastly, our algorithm must stop before c = 0, means
that our algorithm is a composition of at most cmax steps
of (εtoken, δtoken)-DP. As shown in step 3 in our algorithm,
cmax is picked to guarantee that the composition of cmax

steps of (εtoken, δtoken)-DP is (εtotal, δtotal)-DP. Therefore,
our algorithm is (εtotal, δtotal)-DP.

IV. EXPERIMENT

We investigate how our differentially private voting RAG
algorithms (Algorithms 2 and 3) work. Specifically, we ask
the following questions:

1) How do our algorithms improve the accuracy of question-
answering over non-RAG LLM while ensuring a formal
privacy guarantee?

2) Is DPSparseVoteRAG (Algorithm 3) always a better choice
than DPVoteRAG (Algorithm 2)?

3) Is there any useful guidance of choosing hyperparameters
m (the number of voters) and εtoken?

4) How do our algorithm protect against empirical privacy
attack?

We study each question through extensive evaluations on the
well-used benchmarking datasets with multiple LLMs.



Algorithm 3: DPSparseVoteRAG
Require: Prompt x, External data source D, Generator LLM, Retriever R, # of voters m, # of retrieval per voter k, Per-token

privacy budget (εtoken, δtoken), Total privacy budget (εtotal, δtotal), Threshold τ , Maximum # of output tokens (regardless
of privacy) Tmax

Ensure: Private answer y
1: {Privacy budget setup}

2: (εtoken−RAG, δtoken−RAG)← (εtoken/2, δtoken), εtoken−Lap ← εtoken/2
3: cmax ← maximum # of tokens to generate privately based on (εtoken, δtoken) and (εtotal, δtotal)
4: c← cmax, τ̂ ← τ + Lap(2/εtoken−Lap)
5: {Retrieval and random partition of the relevant documents}

6: Dx ← Retrieve mk most relevant documents R(x,D;mk).
7: D1

x, · · · , Dm
x ← Uniformly randomly partition Dx into m disjoint subsets.

8: for t← 1 to Tmax do
9: {Generating the non-private token and token histogram with the sensitive documents}

10: ynon−RAG
t ← LLMt(x, “

′′, y<t)
11: for i← 1 to m do
12: y

(i)
t ← LLMt(x,D

i
x, y<t)

13: end for
14: ht ← Build a histogram of tokens from y

(1)
t , . . . , y

(m)
t

15: {Producing a token from the histogram privately only when ynon−RAG
t is uncommon in ht}

16: at ← Extract a count of ht at ynon−RAG
t

17: if at + Lap(4/εtoken−Lap) ≤ τ̂ then
18: yt ← LimitedDomain(ht, εtoken−RAG, δtoken−RAG)
19: {The privacy budget is only consumed when yt is from the histogram}

20: c← c− 1, τ̂ ← τ + Lap(2/εtoken−Lap)
21: else
22: yt ← ynon−RAG

t

23: end if
24: {Halting if end of sequence or the privacy budget has been exhausted}

25: if yt = <EOS> or c = 0 then
26: return (y1, . . . , yt)
27: end if
28: end for
29: return (y1, . . . , yTmax)

A. Methodology

a) Datasets.: We use two question-answering benchmark-
ing datasets for RAG: Trivia [20] and Natural Question
(NQ) [23]. Each dataset consists of a list of pairs of question
and answer lists, i.e., every question can have multiple answers.
By following the standard evaluations in RAG [6, 18, 25], we
use the Wikipedia dataset as the external data source from
which a retriever finds relevant documents. For each dataset,
we use a subset of 100 questions to manage the computational
overhead 4.

In addition, we experiment with a realistic privacy-sensitive
application, where the external corpus contains inherently
private information. Chatdoctor Questions [27] consist of QA
interactions between patients and doctors in the healthcare

4We first filter out questions to less than 20 ground truth documents in
the Wikipedia dataset. If a question relates with only a few documents, DP
algorithms will likely fail since replacing a document would change the output
a lot. Then, we split the remaining questions into 4 bins with 20–29, 30–39,
40–49 and 50–59 relevant documents and sample 25 questions from each bin.

domain. We sample 100 patient questions from the original
dataset as our test set. The external dataset consists of the
remaining QA pairs from the original ChatDoctor dataset,
excluding the 100 patient questions used for testing. Here is a
document example:

Patient’s description: My son fell from bed heads on,
and didn t vomit or pass out. However, we put him
to sleep as this was his sleep time. After two hours
he woke up, and we felt he had a fever. We gave him
brufen... ### Doctor’s answer: Hi, according to me,
I think since the kid fell and did not have vomiting,
indicates there is no concussion. The fever is incidental,
which can occur after a fall. This is normal. Give the
kid paracetamol, probably every 6 hours once. If even
after two days fever does not subside, kindly visit your
pediatrician.... Take care.



b) Models.: The retriever we use is the Dense Passage
Retriever (DPR) [22] which is built on top of BERT [7].
It finds relevant documents that are close to the question
in the embedding space produced by BERT. We compare
the following generator LLMs: OPT (1.3B) [46], Llama 3.1
(8B) [9], and Pythia (1.4B) [4]. We additionally report the
result of OPT (2.7B), Llama 3.2 (1B), and GPT2-XL [36] in
Appendix A.

c) Algorithms.: We compare our algorithms,
DPVoteRAG (Algorithm 2) and DPSparseVoteRAG
(Algorithm 3), with two baseline algorithms. One baseline
algorithm is Non-RAG where we only provide a question
to the LLM without any relevant documents appended as
a prompt. In order for our algorithms to be useful, they
have to outperform this baseline. The other is VoteRAG
where we carry out the same voting procedure as our
algorithms but choose the most frequent token across voters
non-privately—the most frequent token is always chosen as
the next token to generate. For each number of voters, the
result of this baseline serves as the upper bound of our DP
algorithms.

d) Experimental Setup.: We observe the results under
multiple total privacy budgets, (εtotal, δtotal). More specifically,
we sweep εtotal = 2 to 40 and set δtotal = 10−4. Furthermore,
we consider different per-token privacy budgets for our private
algorithms: εtoken = 1, 2, 5 and δtoken = 10−5. We consider the
number of voters m of 10, 20, 30, 40, and 50 for VoteRAG, and
30, 40, and 50 for DPVoteRAG and DPSparseVoteRAG so as
to ensure reasonable privacy-utility tradeoff and computational
overhead. For DPSparseVoteRAG, we set the threshold τ to
be half of the number of voters, i.e., τ = m/2. When we use
the LimitedDomain mechanism to privately choose the most
frequent token, we set their parameter k̄ to be the number of
voters, where k̄ is the limited size of the domain to which
we add the Gumbel noise. For voting algorithms, each voter
receives 1 relevant document, i.e., k = 1. The utility evaluation
metric is the match accuracy [3, 29, 38, 47] which measures
if the prediction to a question contains any of its answers.

B. Main Results

a) Our RAG algorithms boost the QA accuracy even under
a formal privacy guarantee.: Figure 3 shows the average match
accuracy of baseline algorithms and our private algorithms
under different total privacy guarantees (εtotal). Across different
datasets and LLMs, we observe that DPSparseVoteRAG outper-
forms Non-RAG mostly under εtotal ≥ 10 and approaches the
upper bound of VoteRAG as we allow a larger privacy budget.
This demonstrates that our algorithms enable us to exploit the
external knowledge through RAG to improve the utility of QA
tasks while ensuring a reasonable level of privacy.

b) DPSparseVoteRAG is strictly better than DPVoteRAG.:
In Figure 3, we find that DPSparseVoteRAG consistently
outperforms DPVoteRAG across different LLMs and datasets.
DPSparseVoteRAG augments DPVoteRAG by utilizing the
non-RAG LLM and the sparse vector technique so that it only
spends a privacy budget for an output token requiring sensitive

external knowledge. The consistently better performances
of DPSparseVoteRAG suggest the importance of separately
treating token generations for meaningful tokens, i.e., tokens
requiring external knowledge, and for other general tokens in
the privacy-constraint setting.

c) εtoken should allow medium-length outputs. m should
balance the DP noise and # of well-informed voters.: We take
a closer look at the effects of the hyperparameters in Table I
with OPT (1.3B) on Trivia dataset under different total privacy
budgets εtotal. We provide the detailed results, as in Table I,
with other LLMs in Appendix A.

Commonly between our private algorithms, we observe that
the optimal εtoken increases as we allow more total privacy
budgets. Under a tight total privacy budget, large εtoken allows
our algorithms to only output a few meaningful tokens; thus,
smaller εtoken is preferable. Conversely, under a large total
privacy budget, accurate token generation with large εtoken
is more important than having more tokens generated with
small εtoken. Therefore, it is advised that we set εtoken to be as
large as possible to enable accurate token generations as long
as it is small enough to allow the algorithms to generate
a reasonably large number of tokens (≈ 10). Notice that
DPSparseVoteRAG generally allows us to set larger εtoken than
DPVoteRAG under a fixed total privacy budget. This implies
the benefit of DPSparseVoteRAG to save and spend a privacy
budget cleverly—it can spend the saved privacy budget for
generating important tokens for answering questions correctly.

With regard to the number of voters m, we generally see
that more voters yield better utility with εtoken = 1, but the
number of voters has less effect on the utility with larger
εtoken. This is due to the two distinct consequences of having
more voters. More voters alleviate the effect of DP noise on
the token histograms constructed in the algorithms. However,
depending on the number of relevant documents to the question,
there is a risk of having voters with irrelevant documents who
can vote for the wrong tokens. The first consequence is more
dominant particularly under small εtoken while the second is
more dominant under larger εtoken. Hence, m should be set to
balance these two consequences for achieving better per-token
generation quality.

C. Empirical Privacy Evaluation

To assess the degree of privacy protection offered by our
proposed method, we evaluate the vulnerability of both a non-
private RAG system and our privacy-preserving RAG system
on the privacy-sensitive ChatDoctor dataset using membership
inference attacks (MIA). Given a target document x and a
system fD, an MIA computes a score s(x, f) that reflects the
likelihood of x ∈ D. Without loss of generality, we assume
higher scores indicate a greater probability of membership. By
applying the attack to two sets of documents (an in-distribution
set Din ⊂ D and an out-of-distribution set Dout with no overlap
with D), we can derive a TPR–FPR curve and compute its
AUC.

We adopt the membership score design from S2MIA [28].
In the ChatDoctor dataset, each document corresponds to a
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Fig. 3: Average match accuracy comparison across algorithms on Trivia (upper row) and NQ (lower row) datasets with different
generator LLMs: OPT (1.3B) (left column), Pythia (1.4B) (middle column), and Llama 3.1 (8B) (right column). The reported
results are the means and standard deviations of average match accuracy over three runs. We report the best results over
hyperparameters for each εtotal.
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Fig. 4: TPR-FPR curve of S2MIA for VoteRAG and DPSparseVoteRAG (ε=10) when the base LLMs are OPT (1.3B), Pythia
(1.4B) and Llama 3.1 (8B).

patient–doctor conversation. For a target document x, we extract
the patient’s query xqt and measure the similarity between
the response xrt generated by the tested RAG system and
the doctor’s ground-truth answer xgt in x. The similarity
is quantified using the average precision score defined in

BLEU [33], which serves directly as the membership score in
S2MIA.

Figure 4 presents the TPR–FPR curves and the corresponding
AUC values. Without any privacy protection (VoteRAG), the
attack is highly effective, yielding AUC values well above



TABLE I: Average match accuracy comparison of our algorithms on Trivia dataset with OPT (1.3B) under varying values of
total privacy budget εtotal with different hyperparameters, the number of voters m and εtoken. Bold font values represent the
best performance of each algorithm under fixed εtotal. We report the means of average match accuracy over three runs.

Algorithm εtotal = 5 εtotal = 10 εtotal = 20 εtotal = 40

m 30 40 50 30 40 50 30 40 50 30 40 50

DPVoteRAG
εtoken = 1 0.37 0.40 0.40 0.45 0.49 0.49 0.45 0.49 0.49 0.45 0.49 0.49
εtoken = 2 0.25 0.27 0.27 0.42 0.41 0.41 0.51 0.50 0.49 0.51 0.50 0.49
εtoken = 5 0.12 0.12 0.12 0.25 0.27 0.27 0.38 0.38 0.38 0.46 0.46 0.44

DPSparseVoteRAG
εtoken = 1 0.28 0.37 0.45 0.28 0.38 0.46 0.28 0.38 0.46 0.28 0.38 0.46
εtoken = 2 0.42 0.45 0.48 0.48 0.55 0.57 0.49 0.57 0.60 0.49 0.57 0.60
εtoken = 5 0.33 0.33 0.34 0.47 0.48 0.49 0.56 0.55 0.55 0.59 0.60 0.61

the diagonal baseline (0.5). In contrast, when querying our
privacy-preserving system DPSparseVoteRAG with ε = 10,
the attack performance collapses to the naive baseline (AUC
≈ 0.5). This demonstrates that our method effectively mitigates
empirical privacy attacks while maintaining strong utility on
the QA task, as shown in Figure 3.

D. More Analysis of DPSparseVoteRAG and DPVoteRAG

a) The length of generation.: The design of DPSparse-
VoteRAG might allow longer generation than DPVoteRAG
because of the tighter composition from SVT. We empirically
validated this intuition. Figure 5 shows the numbers of tokens
generated by DPVoteRAG and DPSparseVoteRAG. As we
expect by the design of DPSparseVoteRAG, we see DPSpar-
seVoteRAG generates much more tokens than DPVoteRAG.
This implies the effectiveness of the sparse vector technique in
DPSparseVoteRAG to smartly spend privacy budget enabling
long enough token sequences.

b) Effects of number of ground truth relevant documents.:
Figure 6 shows the performances for different numbers of
ground truth relevant documents. We see questions with more
relevant documents tend to be answered correctly by our
algorithm.

V. RELATED WORK

a) Privacy-preserving algorithms in large language mod-
els.: Zeng et al. [44] proposed an empirical privacy-preserving
algorithm for RAG through the synthetic data generation, while
our work studies privacy-preserving RAG in the framework
differential privacy, which protects the privacy of each indi-
vidual document with the theoretical guarantee. Differential
privacy has been studied in many other tasks in large language
models too. Prompt tuning helps tailor the LLM to new tasks
from a (private) test-domain dataset. Hong et al. [17] and
Duan et al. [8] study the DP mechanism on two different
prompt tuning frameworks: prompt optimization and offsite
prompt tuning [39]. In-context learning adapts to different
tasks by illustrating some examples in the context as the task
description. DP in-context learning considers the situation when
the examples are picked from any private set. Tang et al.
[40] tackles this problem by generating synthetic examples
with DP and Wu et al. [42] solves the DP test query by

generating the answers, both in a sample-and-aggregate fashion.
Amin et al. [2] proposes the aggregation based method to
generate synthetic texts with DP, which applies the similar
SVT idea of our methodology to save the budget for some
tokens. The differentially private pretraining and finetuning
of LLMs has been studied to address the privacy concern
in the training data and memory is a large bottleneck when
naively deploying DP-SGD [1]. Li et al. [26] focuses on the
pretraining stage which introduces ghost clipping to make DP-
SGD more memory efficient. Yu et al. [43] explores finetuning
in the parameter-efficient framework LoRA [19]. Notice that
DP voting plays a crucial role in these sample-and-aggregate
algorithms, including ours. A basic approach is to apply the
Laplacian or Gaussian mechanism [11]. Papernot et al. [31, 32]
proposed a data-dependent privacy analysis, which can be
tighter when the majority vote has a large margin over other
options. We integrate the LimitedDomain mechanism for our
algorithm, which addresses challenges when the voting domain
is large [10]; the large vocabulary size in token voting is our
main bottleneck.

b) Composition in differential privacy.: Our algorithms
generate the answers token by token, where each token needs a
query to the private dataset and consumes some privacy budget.
In this paper, we set up the privacy parameters before the
start of the algorithm and have a pre-set maximum number of
tokens to generate. However, the number of tokens to generate
is different per question and is unknown before the algorithm
starts – it is possible that the number of generated tokens is
much smaller than the pre-set number but we still need to
pay the full pre-defined privacy cost. A line of work [16, 24,
37, 41] tries to measure the privacy budget in fully adaptive
composition where the budget consuming can interact with
the data. Especially, Whitehouse et al. [41] gives an analysis
for this fully adaptive setting which matches the tightness of
advanced composition. The idea of fully adaptive composition
sounds a fit to our problem, which allows us to “pay as we
go”, rather than predefining the εtotal before the generation
process. We found the analysis for fully adaptive setting is
effective for large number of steps and small budget per step,
while in our algorithm the number of generated tokens would
not be very large and each token generation needs a relatively
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three runs. We see questions with more relevant documents
tend to be answered correctly by our algorithm.

large budget to guarantee the utility. This mismatch makes us
stick with the advanced composition.

VI. CONCLUSION AND FUTURE WORK

We introduce the first differentially private algorithms for
RAG, enabling us to enhance LLMs by domain-specific but
sensitive external corpus. With our novel combination of the DP
voting algorithm and sparse vector technique along with the non-
private LLM, we succeed in spending privacy budget only when
the LLM needs sensitive information to generate a new token.
Consequently, DPSparseVoteRAG generates a sufficiently long
and accurate response under a reasonable privacy budget.
Our experiments demonstrate that our algorithms outperform
the non-RAG baseline across different datasets and models,
showing their effectiveness.

One of our future directions is to conduct more practical
empirical evaluations. The Wikipedia dataset, which we use as
the external data source, is typically included in the training
data of recent LLMs. RAG is particularly effective when the

external knowledge is truly sensitive and thus outside the LLM
training data. It is essential for us to conduct evaluations that are
as close to the real situation as possible and see how effective
our algorithms are over non-RAG LLMs. Since our usage
of the sparse vector technique is applicable to any DP token
generation algorithm through voting, another future direction
would be to examine how it improves DP token generation
across different tasks, e.g., in-context learning and prompt
tuning.

LLM USAGE CONSIDERATIONS

We primarily use LLMs to refine the grammar and clarity
of our writing, while the core ideas and research progress
are developed independently through our own study and
investigation.
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APPENDIX

A. Additional Experimental Results

In Figures 7–9, we present the average match accuracy of baseline algorithms and our algorithms for different total privacy
guarantees (εtotal) with OPT (2.7B), Llama 3.2 (1B), and GPT2-XL. We see the similar trend observed in Figure 3.
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Fig. 7: Average match accuracy comparison across algorithms on Trivia (left) and NQ (right) datasets with OPT (2.7B). The
reported results are the means and standard deviations of average match accuracy over three runs. We report the best results
over hyperparameters for each εtotal.
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Fig. 8: Average match accuracy comparison across algorithms on Trivia (left) and NQ (right) datasets with Llama 3.2 (1B). The
reported results are the means and standard deviations of average match accuracy over three runs. We report the best results
over hyperparameters for each εtotal.

For completeness, we further present the detailed results, in the same form of the one provided in Table I, with OPT (1.3B
and 2.7B), Pythia (1.4B), Llama 3.1 (8B), Llama 3.2 (1B), and GPT2-XL on Trivia and NQ datasets in Tables II–XV.



TABLE II: Average match accuracy comparison of our algorithms on NQ dataset with OPT (1.3B) under varying values of
total privacy budget εtotal with different hyperparameters, the number of voters m and εtoken. Bold font values represent the
best performance of each algorithm under fixed εtotal. We report the means of average match accuracy over three runs.

Algorithm εtotal = 5 εtotal = 10 εtotal = 20 εtotal = 40

m 30 40 50 30 40 50 30 40 50 30 40 50

DPVoteRAG
εtoken = 1 0.17 0.23 0.23 0.28 0.35 0.37 0.28 0.35 0.37 0.28 0.35 0.37
εtoken = 2 0.12 0.14 0.13 0.24 0.25 0.26 0.38 0.42 0.42 0.38 0.42 0.42
εtoken = 5 0.04 0.06 0.05 0.12 0.14 0.13 0.22 0.22 0.21 0.36 0.36 0.35

DPSparseVoteRAG
εtoken = 1 0.14 0.18 0.28 0.14 0.18 0.29 0.14 0.18 0.29 0.14 0.18 0.29
εtoken = 2 0.23 0.25 0.29 0.37 0.41 0.43 0.39 0.44 0.47 0.39 0.44 0.47
εtoken = 5 0.11 0.14 0.13 0.28 0.31 0.29 0.43 0.43 0.42 0.53 0.53 0.53

TABLE III: Average match accuracy comparison of our algorithms on Trivia dataset with OPT (2.7B) under varying values of
total privacy budget εtotal with different hyperparameters, the number of voters m and εtoken. Bold font values represent the
best performance of each algorithm under fixed εtotal. We report the means of average match accuracy over three runs.

Algorithm εtotal = 5 εtotal = 10 εtotal = 20 εtotal = 40

m 30 40 50 30 40 50 30 40 50 30 40 50

DPVoteRAG
εtoken = 1 0.34 0.40 0.39 0.48 0.58 0.59 0.48 0.58 0.59 0.48 0.58 0.59
εtoken = 2 0.24 0.23 0.23 0.41 0.41 0.40 0.59 0.61 0.60 0.59 0.61 0.60
εtoken = 5 0.09 0.10 0.10 0.23 0.24 0.23 0.38 0.39 0.38 0.49 0.51 0.51

DPSparseVoteRAG
εtoken = 1 0.31 0.48 0.53 0.31 0.49 0.53 0.31 0.49 0.53 0.31 0.49 0.53
εtoken = 2 0.50 0.52 0.53 0.57 0.66 0.68 0.58 0.69 0.70 0.58 0.69 0.70
εtoken = 5 0.35 0.38 0.37 0.54 0.54 0.54 0.66 0.66 0.66 0.73 0.71 0.70

TABLE IV: Average match accuracy comparison of our algorithms on NQ dataset with OPT (2.7B) under varying values of
total privacy budget εtotal with different hyperparameters, the number of voters m and εtoken. Bold font values represent the
best performance of each algorithm under fixed εtotal. We report the means of average match accuracy over three runs.

Algorithm εtotal = 5 εtotal = 10 εtotal = 20 εtotal = 40

m 30 40 50 30 40 50 30 40 50 30 40 50

DPVoteRAG
εtoken = 1 0.26 0.30 0.31 0.39 0.48 0.49 0.39 0.48 0.49 0.39 0.48 0.49
εtoken = 2 0.20 0.18 0.17 0.36 0.34 0.33 0.54 0.51 0.51 0.54 0.51 0.51
εtoken = 5 0.06 0.05 0.05 0.20 0.17 0.17 0.34 0.31 0.30 0.46 0.43 0.42

DPSparseVoteRAG
εtoken = 1 0.16 0.24 0.32 0.16 0.24 0.32 0.16 0.24 0.32 0.16 0.24 0.32
εtoken = 2 0.31 0.32 0.34 0.46 0.52 0.54 0.47 0.53 0.57 0.47 0.53 0.57
εtoken = 5 0.12 0.12 0.11 0.38 0.35 0.35 0.57 0.53 0.53 0.61 0.58 0.60

TABLE V: Average match accuracy comparison of our algorithms on Trivia dataset with Pythia (1.4B) under varying values of
total privacy budget εtotal with different hyperparameters, the number of voters m and εtoken. Bold font values represent the
best performance of each algorithm under fixed εtotal. We report the means of average match accuracy over three runs.

Algorithm εtotal = 5 εtotal = 10 εtotal = 20 εtotal = 40

m 30 40 50 30 40 50 30 40 50 30 40 50

DPVoteRAG
εtoken = 1 0.24 0.28 0.29 0.34 0.41 0.42 0.34 0.41 0.42 0.34 0.41 0.42
εtoken = 2 0.18 0.18 0.19 0.30 0.31 0.32 0.43 0.45 0.44 0.43 0.45 0.44
εtoken = 5 0.06 0.05 0.07 0.18 0.18 0.19 0.29 0.30 0.30 0.38 0.39 0.37

DPSparseVoteRAG
εtoken = 1 0.25 0.32 0.38 0.25 0.32 0.39 0.25 0.32 0.39 0.25 0.32 0.39
εtoken = 2 0.37 0.40 0.40 0.42 0.47 0.48 0.43 0.53 0.54 0.43 0.53 0.54
εtoken = 5 0.25 0.25 0.26 0.43 0.44 0.41 0.51 0.53 0.51 0.57 0.57 0.57



TABLE VI: Average match accuracy comparison of our algorithms on NQ dataset with Pythia (1.4B) under varying values of
total privacy budget εtotal with different hyperparameters, the number of voters m and εtoken. Bold font values represent the
best performance of each algorithm under fixed εtotal. We report the means of average match accuracy over three runs.

Algorithm εtotal = 5 εtotal = 10 εtotal = 20 εtotal = 40

m 30 40 50 30 40 50 30 40 50 30 40 50

DPVoteRAG
εtoken = 1 0.16 0.23 0.23 0.21 0.30 0.32 0.21 0.30 0.32 0.21 0.30 0.32
εtoken = 2 0.09 0.08 0.09 0.23 0.26 0.26 0.32 0.35 0.35 0.32 0.35 0.35
εtoken = 5 0.05 0.04 0.04 0.10 0.09 0.09 0.23 0.24 0.23 0.31 0.32 0.30

DPSparseVoteRAG
εtoken = 1 0.09 0.17 0.24 0.09 0.17 0.24 0.09 0.17 0.24 0.09 0.17 0.24
εtoken = 2 0.20 0.25 0.26 0.25 0.36 0.41 0.26 0.37 0.43 0.26 0.37 0.43
εtoken = 5 0.14 0.14 0.15 0.27 0.28 0.27 0.39 0.41 0.43 0.46 0.51 0.49

TABLE VII: Average match accuracy comparison of our algorithms on Trivia dataset with Llama 3.1 (8B) under varying values
of total privacy budget εtotal with different hyperparameters, the number of voters m and εtoken. Bold font values represent the
best performance of each algorithm under fixed εtotal. We report the means of average match accuracy over three runs.

Algorithm εtotal = 5 εtotal = 10 εtotal = 20 εtotal = 40

m 30 40 50 30 40 50 30 40 50 30 40 50

DPVoteRAG
εtoken = 1 0.75 0.77 0.79 0.81 0.84 0.85 0.81 0.84 0.85 0.81 0.84 0.85
εtoken = 2 0.51 0.51 0.51 0.78 0.78 0.78 0.85 0.85 0.85 0.85 0.85 0.85
εtoken = 5 0.20 0.21 0.21 0.51 0.51 0.51 0.73 0.74 0.74 0.83 0.82 0.82

DPSparseVoteRAG
εtoken = 1 0.72 0.83 0.88 0.72 0.83 0.88 0.72 0.83 0.88 0.72 0.83 0.88
εtoken = 2 0.89 0.94 0.94 0.93 0.96 0.96 0.93 0.96 0.96 0.93 0.96 0.96
εtoken = 5 0.76 0.78 0.76 0.93 0.93 0.93 0.95 0.97 0.97 0.95 0.97 0.97

TABLE VIII: Average match accuracy comparison of our algorithms on NQ dataset with Llama 3.1 (8B) under varying values
of total privacy budget εtotal with different hyperparameters, the number of voters m and εtoken. Bold font values represent the
best performance of each algorithm under fixed εtotal. We report the means of average match accuracy over three runs.

Algorithm εtotal = 5 εtotal = 10 εtotal = 20 εtotal = 40

m 30 40 50 30 40 50 30 40 50 30 40 50

DPVoteRAG
εtoken = 1 0.49 0.54 0.54 0.57 0.63 0.64 0.57 0.63 0.64 0.57 0.63 0.64
εtoken = 2 0.30 0.29 0.30 0.55 0.56 0.55 0.64 0.66 0.65 0.64 0.66 0.65
εtoken = 5 0.11 0.11 0.11 0.29 0.29 0.30 0.52 0.52 0.51 0.62 0.63 0.62

DPSparseVoteRAG
εtoken = 1 0.38 0.55 0.65 0.38 0.55 0.66 0.38 0.55 0.66 0.38 0.55 0.66
εtoken = 2 0.64 0.72 0.72 0.71 0.78 0.80 0.71 0.79 0.83 0.71 0.79 0.83
εtoken = 5 0.48 0.49 0.48 0.74 0.75 0.74 0.79 0.80 0.79 0.85 0.87 0.85

TABLE IX: Average match accuracy comparison of our algorithms on Trivia dataset with Llama 3.2 (1B) under varying values
of total privacy budget εtotal with different hyperparameters, the number of voters m and εtoken. Bold font values represent the
best performance of each algorithm under fixed εtotal. We report the means of average match accuracy over three runs.

Algorithm εtotal = 5 εtotal = 10 εtotal = 20 εtotal = 40

m 30 40 50 30 40 50 30 40 50 30 40 50

DPVoteRAG
εtoken = 1 0.46 0.49 0.52 0.54 0.57 0.60 0.54 0.57 0.60 0.54 0.57 0.60
εtoken = 2 0.27 0.27 0.28 0.51 0.52 0.52 0.60 0.61 0.60 0.60 0.61 0.60
εtoken = 5 0.10 0.10 0.10 0.27 0.27 0.28 0.47 0.47 0.47 0.56 0.57 0.56

DPSparseVoteRAG
εtoken = 1 0.38 0.52 0.63 0.38 0.52 0.63 0.38 0.52 0.63 0.38 0.52 0.63
εtoken = 2 0.61 0.62 0.64 0.70 0.76 0.77 0.71 0.78 0.79 0.71 0.78 0.79
εtoken = 5 0.43 0.43 0.45 0.66 0.64 0.66 0.76 0.75 0.76 0.81 0.80 0.79



TABLE X: Average match accuracy comparison of our algorithms on NQ dataset with Llama 3.2 (1B) under varying values of
total privacy budget εtotal with different hyperparameters, the number of voters m and εtoken. Bold font values represent the
best performance of each algorithm under fixed εtotal. We report the means of average match accuracy over three runs.

Algorithm εtotal = 5 εtotal = 10 εtotal = 20 εtotal = 40

m 30 40 50 30 40 50 30 40 50 30 40 50

DPVoteRAG
εtoken = 1 0.24 0.27 0.27 0.31 0.38 0.39 0.31 0.38 0.39 0.31 0.38 0.39
εtoken = 2 0.15 0.15 0.12 0.30 0.31 0.27 0.42 0.44 0.42 0.42 0.44 0.42
εtoken = 5 0.05 0.05 0.05 0.15 0.15 0.13 0.30 0.30 0.27 0.38 0.39 0.35

DPSparseVoteRAG
εtoken = 1 0.14 0.25 0.32 0.14 0.25 0.34 0.14 0.25 0.34 0.14 0.25 0.34
εtoken = 2 0.31 0.33 0.33 0.41 0.49 0.52 0.42 0.50 0.53 0.42 0.50 0.53
εtoken = 5 0.15 0.14 0.13 0.40 0.36 0.32 0.53 0.51 0.53 0.57 0.56 0.58

TABLE XI: Average match accuracy comparison of our algorithms on Trivia dataset with GPT2-XL under varying values of
total privacy budget εtotal with different hyperparameters, the number of voters m and εtoken. Bold font values represent the
best performance of each algorithm under fixed εtotal. We report the means of average match accuracy over three runs.

Algorithm εtotal = 5 εtotal = 10 εtotal = 20 εtotal = 40

m 30 40 50 30 40 50 30 40 50 30 40 50

DPVoteRAG
εtoken = 1 0.31 0.32 0.34 0.36 0.38 0.42 0.36 0.38 0.42 0.36 0.38 0.42
εtoken = 2 0.22 0.23 0.23 0.37 0.38 0.37 0.44 0.46 0.46 0.44 0.46 0.46
εtoken = 5 0.08 0.08 0.08 0.23 0.23 0.23 0.34 0.34 0.33 0.44 0.43 0.42

DPSparseVoteRAG
εtoken = 1 0.25 0.30 0.38 0.25 0.30 0.38 0.25 0.30 0.38 0.25 0.30 0.38
εtoken = 2 0.37 0.39 0.38 0.41 0.46 0.47 0.42 0.47 0.48 0.42 0.47 0.48
εtoken = 5 0.28 0.27 0.27 0.43 0.43 0.43 0.52 0.53 0.53 0.59 0.57 0.56

TABLE XII: Average match accuracy comparison of our algorithms on NQ dataset with GPT2-XL under varying values of
total privacy budget εtotal with different hyperparameters, the number of voters m and εtoken. Bold font values represent the
best performance of each algorithm under fixed εtotal. We report the means of average match accuracy over three runs.

Algorithm εtotal = 5 εtotal = 10 εtotal = 20 εtotal = 40

m 30 40 50 30 40 50 30 40 50 30 40 50

DPVoteRAG
εtoken = 1 0.21 0.24 0.27 0.25 0.28 0.33 0.25 0.28 0.33 0.25 0.28 0.33
εtoken = 2 0.18 0.19 0.19 0.30 0.29 0.29 0.35 0.35 0.36 0.35 0.35 0.36
εtoken = 5 0.08 0.08 0.07 0.19 0.19 0.19 0.30 0.29 0.29 0.36 0.34 0.34

DPSparseVoteRAG
εtoken = 1 0.14 0.19 0.24 0.14 0.19 0.24 0.14 0.19 0.24 0.14 0.19 0.24
εtoken = 2 0.24 0.28 0.31 0.28 0.33 0.36 0.29 0.35 0.40 0.29 0.35 0.40
εtoken = 5 0.18 0.18 0.16 0.34 0.33 0.35 0.41 0.39 0.41 0.42 0.41 0.43

TABLE XIII: Average match accuracy comparison of our algorithms on ChatDoctor dataset with OPT (1.3B) under varying
values of total privacy budget εtotal with different hyperparameters, the number of voters m and εtoken. Bold font values
represent the best performance of each algorithm under fixed εtotal. We report the means of average match accuracy over three
runs.

Algorithm εtotal = 5 εtotal = 10 εtotal = 20 εtotal = 40

m 30 40 50 30 40 50 30 40 50 30 40 50

DPVoteRAG
εtoken = 1 0.82 0.83 0.83 0.82 0.83 0.83 0.82 0.83 0.83 0.82 0.83 0.83
εtoken = 2 0.82 0.82 0.81 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83
εtoken = 5 0.82 0.82 0.82 0.84 0.84 0.84 0.82 0.82 0.82 0.83 0.83 0.83

DPSparseVoteRAG
εtoken = 1 0.79 0.80 0.81 0.79 0.80 0.81 0.79 0.80 0.81 0.79 0.80 0.81
εtoken = 2 0.83 0.84 0.84 0.82 0.84 0.84 0.82 0.84 0.85 0.82 0.84 0.85
εtoken = 5 0.13 0.13 0.13 0.84 0.84 0.84 0.84 0.84 0.84 0.85 0.85 0.85
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Fig. 9: Average match accuracy comparison across algorithms on Trivia (left) and NQ (right) datasets with GPT2-XL. The
reported results are the means and standard deviations of average match accuracy over three runs. We report the best results
over hyperparameters for each εtotal.

TABLE XIV: Average match accuracy comparison of our algorithms on ChatDoctor dataset with Pythia (1.4B) under varying
values of total privacy budget εtotal with different hyperparameters, the number of voters m and εtoken. Bold font values
represent the best performance of each algorithm under fixed εtotal. We report the means of average match accuracy over three
runs.

Algorithm εtotal = 5 εtotal = 10 εtotal = 20 εtotal = 40

m 30 40 50 30 40 50 30 40 50 30 40 50

DPVoteRAG
εtoken = 1 0.82 0.84 0.85 0.82 0.84 0.85 0.82 0.84 0.85 0.82 0.84 0.85
εtoken = 2 0.82 0.82 0.82 0.84 0.85 0.85 0.84 0.85 0.85 0.84 0.85 0.85
εtoken = 5 0.84 0.84 0.84 0.81 0.82 0.81 0.84 0.84 0.84 0.85 0.85 0.85

DPSparseVoteRAG
εtoken = 1 0.79 0.80 0.81 0.79 0.80 0.81 0.79 0.80 0.81 0.79 0.80 0.81
εtoken = 2 0.82 0.82 0.83 0.83 0.84 0.85 0.83 0.85 0.85 0.83 0.85 0.85
εtoken = 5 0.82 0.82 0.82 0.83 0.83 0.83 0.85 0.85 0.85 0.85 0.85 0.85

B. Revisions after the Last Submission

We addressed the reviews raised from the last submission. Here are the details.
a) Evaluation on realistic private dataset.: We additionally evaluate the methods with ChatDoctor dataset, which is

supposed to be unseen in the pre-train stage and is practically private and sensitive. Please check the details of our experimental
results.

TABLE XV: Average match accuracy comparison of our algorithms on ChatDoctor dataset with Llama 3.1 (8B) under varying
values of total privacy budget εtotal with different hyperparameters, the number of voters m and εtoken. Bold font values
represent the best performance of each algorithm under fixed εtotal. We report the means of average match accuracy over three
runs.

Algorithm εtotal = 5 εtotal = 10 εtotal = 20 εtotal = 40

m 30 40 50 30 40 50 30 40 50 30 40 50

DPVoteRAG
εtoken = 1 0.83 0.84 0.84 0.83 0.84 0.84 0.83 0.84 0.84 0.83 0.84 0.84
εtoken = 2 0.83 0.83 0.83 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84
εtoken = 5 0.82 0.82 0.82 0.84 0.84 0.84 0.84 0.84 0.84 0.85 0.84 0.84

DPSparseVoteRAG
εtoken = 1 0.82 0.83 0.82 0.82 0.83 0.82 0.82 0.83 0.82 0.82 0.83 0.82
εtoken = 2 0.84 0.84 0.84 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85
εtoken = 5 0.46 0.45 0.35 0.84 0.85 0.84 0.85 0.86 0.85 0.86 0.86 0.86



b) Our method only beats nonrag baseline when ε = 10, which seems impractical.: We additionally evaluate our method
against with empirical privacy attack and the results show that ε = 10 is sufficient to perfectly defend against the existing attack.

c) Complete proof of theorems.: We provided the full proofs for both theorems.
d) Discussion on more related work.: We distinguish our work with more related work in the literature in our related

work section.



Reviewer 1 
Summary: 
The paper studies the problem of private retrieval augmented generation: given a database of sensitive texts, we 
want to be able to answer user questions using these texts while preserving privacy (of the users that contributed 
documents to the database). 

The mechanism described in the paper uses subsample and aggregate idea and generates tokens of the response 
one by one. 

1.​ First, it retrieves relevant documents. 
2.​ It splits the documents into parts. 
3.​ It assembles each part into prompt, 
4.​ It predicts the next token for each prompt. 
5.​ Using DP voting mechanism it selects the most common token and appends it to the prompts. 
6.​ If the token is not "END OF RESPONSE" it goes to step 4. 

It is easy to see why the mechanism is DP; however, utility of the method is non-trivial and depends on the 
agreement between the tokens produced on different parts of the retrieved collection. 

Strengths And Weaknesses: 
The topic discussed in the paper is very important for the field and the paper is written really clearly. However, the 
paper is not comparing the algorithm they propose to the other solutions even the algorithms that are using almost 
the same idea (e.g., https://arxiv.org/abs/2312.02132 and https://arxiv.org/abs/2407.12108). 

Quality: 3: good 
Clarity: 3: good 
Significance: 3: good 
Originality: 2: fair 
Questions: 

1.​ The main thing to address is to extend the experiments and compare with the other solutions for the 
problem. 

2.​ Privacy parameters used in the experiments are not great: with all due respect, epsilon=10 is not a 
"reasonable budget", also delta=10^-4 is pretty big. 

3.​ In section 2.0.1 a reference for NumericSparse is missing. 
4.​ In addition, in your comparisons, you only compare to non-RAG solution, while it would be good to compare 

to non-private RAG to see the "loss". 
5.​ Finally, the algorithm in the paper has an improvement over non-RAG solution only when there are a lot of 

documents in the dataset that would help answering the question. It would be good to design an experiment 
that would allow measuring this effect. 

Limitations: 
Yes. 

Rating: 3: Borderline reject: Technically solid paper where reasons to reject, e.g., limited evaluation, outweigh 
reasons to accept, e.g., good evaluation. Please use sparingly. 
Confidence: 5: You are absolutely certain about your assessment. You are very familiar with the related work and 
checked the math/other details carefully. 
Ethical Concerns: NO or VERY MINOR ethics concerns only 
Paper Formatting Concerns: 
No Concerns 

Code Of Conduct Acknowledgement: Yes 
Responsible Reviewing Acknowledgement: Yes 
 
Reviewer 2 
Summary: 

https://arxiv.org/abs/2312.02132
https://arxiv.org/abs/2407.12108


This paper studies retrieval-augmented generation (RAG) with differential privacy, by proposing a method that spends 
privacy budget only for tokens that require sensitive information and uses the non-private LLM for other tokens. The 
authors propose an algorithm, DPVoteRAG, which prepares multiple LLM voters, feeds disjoint partitions of the 
sensitive corpus to them, and produces output tokens by taking the majority vote. They then design another 
algorithm, DPSparseVoteRAG, that spends privacy budget only when the vectors do not agree with the non-private 
LLM output without context. They do experiments with LLMs on two datasets and multiple models, and show 
improvements over the non-RAG baseline for privacy budgets of . 

Strengths And Weaknesses: 
Strengths 

●​ Privacy with LLMs is an important and timely topic. 
●​ The algorithm is quite general and can be applied to different models or datasets. 
●​ The experiments cover multiple models and hyperparameters. 

Weaknesses 

●​ The private RAG algorithms only outperform the non-RAG baseline for a privacy budget of epsilon=10, 
which may not be small enough for practitioners. 

●​ The proposed algorithms involved taking the majority votes from multiple LLM voters, which might be 
computationally costly to implement. 

●​ In the experiments, the authors use the Wikipedia dataset as the external data source for retrieving 
documents. However, the models may be trained on it since it is a common public dataset, which may be 
problematic since the external dataset should be distinct from the dataset used for training, in order for the 
privacy guarantees to hold. 

Quality: 2: fair 
Clarity: 3: good 
Significance: 2: fair 
Originality: 2: fair 
Questions: 

●​ What is the computational overhead of implementing the private algorithm? Is there any data on the 
computation-utility tradeoff? 

●​ It would significantly improve the results if there is an evaluation on a dataset where privacy is more 
important, rather than using the Wikipedia dataset. 

Limitations: 
yes 

Rating: 2: Reject: For instance, a paper with technical flaws, weak evaluation, inadequate reproducibility and 
incompletely addressed ethical considerations. 
Confidence: 4: You are confident in your assessment, but not absolutely certain. It is unlikely, but not impossible, that 
you did not understand some parts of the submission or that you are unfamiliar with some pieces of related work. 
Ethical Concerns: NO or VERY MINOR ethics concerns only 
Paper Formatting Concerns: 
None. 

Code Of Conduct Acknowledgement: Yes 
Responsible Reviewing Acknowledgement: Yes 
 
Reviewer 3 
Summary: 
This paper studies the problem of using RAG with differential privacy (DP). Long-form answers might deplete the 
privacy budget all too quickly, and the authors propose a method to spend the privacy budget only for a subset of 
tokens. The proposed method makes use of a 'sparse vector' technique to spend the privacy budget only for the 
tokens that require the sensitive information. This sparsity then leads to a more economical use of the privacy budget. 
Experimental results are reported for two datasets and three different LLM variations. 



Strengths And Weaknesses: 
●​ RAG is an important method to scale LLMs to external datasets. In most of those applications, the data is 

sensitive and differential privacy is a common choice to protect the privacy of the data. 
●​ The method requires the computational overhead of running multiple LLMs as voters. (However, that 

computational cost can be worth it to obtain the DP guarantee.) 
●​ Theorem 1 is ill-posed. Differential privacy is defined with respect to an adjacency relationship on two 

datasets. The theorem does not mention the adjacency relationship [1]. Although one can retrieve it from the 
proof in the appendix, I would encourage making the theorem statement more explicit. The main confusion 
is that the adjacency relationship seems to be with respect to documents, yet the method talks about the 
privacy loss of each consecutive token. 

Quality: 2: fair 
Clarity: 1: poor 
Significance: 3: good 
Originality: 2: fair 
Questions: 

●​ The proof for theorem 2 is not included. Could that please be added or provided? Moreover, I do not think 
that the current statement of Theorem 2 can be correct at all. Each access to the data, either for direct 
analysis, or for adaptivity, incurs a (small) loss of privacy. An example of this was established in Dwork and 
Lei (2009) [5] and a further generalization was given in Redberg et al. (2023) [6]. 

●​ On the 'Llama 3.1 (8B) on Trivia' experiment, the non-RAG solution is almost as good as the RAG solution. 
This is surprising, as the non-RAG solution does not see the data at all. Does this mean that any DP solution 
could benefit from Privacy Amplification by Subsampling? (or, alternatively, could this imply that the 
wikipedia dataset was part of the pre-training data and the method should be evaluated on a private RAG 
dataset?) 

●​ The results do not include for epsilon_total=1.0. Although many papers exist that evaluate many values of 
epsilon, the value of epsilon=1.0 is still the recommended setting [2][3][4]. What is the motivation to start the 
parameter sweep at epsilon_total=2.0? 

●​ Why is delta set at 1e-4? I assume that the wikipedia dataset is much larger than 10.000 entries. Whenever 
the delta is larger than 1 divided by the sample size, the privacy loss could be boundless for at least one 
datapoint, rendering the differential privacy guarantee meaningless [2]. 

[1] Dwork, Roth. "The algorithmic foundations of differential privacy." Foundations and Trends® in Theoretical 
Computer Science (2014) 

[2] Blanco-Justicia et al. "A critical review on the use (and misuse) of differential privacy in machine learning." ACM 
Computing Surveys 55.8 (2022): 1-16. 

[3] Hsu et al. "Differential privacy: An economic method for choosing epsilon." 2014 IEEE 27th Computer Security 
Foundations Symposium. IEEE, 2014. 

[4] van Dijk, Nguyen. "Considerations on the theory of training models with differential privacy." Federated Learning. 
Academic Press, 2024. 29-55. 

[5] Dwork and Lei. "Differential privacy and robust statistics." ACM symposium on Theory of computing, 2009. 

[6] Redberg, Zhu, and Wang. "Generalized ptr: User-friendly recipes for data-adaptive algorithms with differential 
privacy." International Conference on Artificial Intelligence and Statistics. PMLR, 2023. 

Limitations: 
The proof for Theorem 2 is not provided. 

Rating: 2: Reject: For instance, a paper with technical flaws, weak evaluation, inadequate reproducibility and 
incompletely addressed ethical considerations. 
Confidence: 3: You are fairly confident in your assessment. It is possible that you did not understand some parts of 
the submission or that you are unfamiliar with some pieces of related work. Math/other details were not carefully 
checked. 
Ethical Concerns: NO or VERY MINOR ethics concerns only 
Paper Formatting Concerns: 



None 

Small observations that are not part of the review 
From the limitations section, there are two different ways of phrasing the answer. Line 504: 'Yes we discuss the 
limitations and the future work in the last section.' Line 536: 'Yes, we provide the full proof in the main proof' 

I would choose one of the two styles and use that throughout the paper. 

Code Of Conduct Acknowledgement: Yes 
Responsible Reviewing Acknowledgement: Yes 
 
Reviewer 4 
Summary: 
This paper proposes differentially private retrieval-augmented generation (RAG) algorithms to enable LLMs to utilize 
sensitive external knowledge while preserving privacy. The authors introduce two algorithms: DPVoteRAG, which 
uses a sample-and-aggregate framework with multiple LLM voters operating on disjoint document partitions, and 
DPSparseVoteRAG, which incorporates the sparse vector technique to only consume privacy budget when sensitive 
information is actually needed for token generation. Experiments on Trivia and Natural Questions datasets with 
various LLMs show that DPSparseVoteRAG outperforms non-RAG baselines under reasonable privacy budgets (ε ≈ 
10) while generating longer, more accurate responses than DPVoteRAG. 

Strengths And Weaknesses: 
Strengths： 

1.This work tackles the important intersection of privacy and knowledge-augmented AI systems, which is increasingly 
relevant as organizations seek to leverage LLMs with proprietary or sensitive data while maintaining compliance with 
privacy regulations. 

2: The paper provides a principled solution grounded in differential privacy theory, with formal privacy guarantees and 
clever application of the sparse vector technique to optimize privacy budget allocation. 

Weaknesses 

1.​ The evaluation on only 100 questions per dataset due to "computational overhead" is insufficient for drawing 
robust conclusions. This small scale undermines the statistical significance of results and raises concerns 
about generalizability to real-world applications. 

2: Using Wikipedia as the external corpus is problematic since it's likely included in LLM training data, making the 
privacy scenario artificial. Real sensitive data would have different characteristics and retrieval patterns that aren't 
captured in this evaluation. 

3.​ The requirement of ε ≈ 10 for reasonable performance is quite high for privacy-sensitive applications. Many 
real-world scenarios would require much stricter privacy budgets (ε < 1), making the practical applicability 
questionable. 

4 The voting mechanism with 30-50 LLM instances creates significant computational and economic barriers to 
deployment. The paper lacks analysis of inference costs, latency impacts, and scalability considerations that would 
be critical for practical adoption. 

Quality: 2: fair 
Clarity: 3: good 
Significance: 3: good 
Originality: 3: good 
Questions: 
How does the privacy guarantee degrade when the retrieval mechanism itself leaks information? The paper assumes 
retrieval queries don't reveal sensitive information, but in practice, the pattern of which documents are retrieved for 
specific questions could leak substantial information about the corpus content. How would the authors extend their 
framework to handle differentially private retrieval? 



What happens when the assumption of "one document per individual" is violated? Real-world scenarios often involve 
multiple documents per individual or documents that contain information about multiple individuals. How would the 
privacy analysis change, and what modifications to the algorithms would be needed to handle these more complex 
data ownership patterns? 

Limitations: 
Yes 

Rating: 3: Borderline reject: Technically solid paper where reasons to reject, e.g., limited evaluation, outweigh 
reasons to accept, e.g., good evaluation. Please use sparingly. 
Confidence: 3: You are fairly confident in your assessment. It is possible that you did not understand some parts of 
the submission or that you are unfamiliar with some pieces of related work. Math/other details were not carefully 
checked. 
Ethical Concerns: NO or VERY MINOR ethics concerns only 
Paper Formatting Concerns: 
No 

Code Of Conduct Acknowledgement: Yes 
Responsible Reviewing Acknowledgement: Yes 
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